## Research & Publications

A complete list of papers is available **here****, **on **arXiv****,**** **and** ****GoogleScholar**. Here's a selection.

**Selected Papers**

**Gromov-Witten theory via roots and logarithms (2022)**. The geometry of orbifolds and logarithmic structures provide two ways to study rational curves in a manifold with fixed tangency along a boundary divisor. The orbifold theory has elegant structural properties, but the logarithmic theory is better behaved from a conceptual standpoint. The paper provides a bridge between them by proving that the orbifold theory of blowups of the target manifold converges to the logarithmic theory.**A case study of intersections on blowups of the moduli of curves (2021)****.**Sam and I explore the intersection theory on the system of blowups of a simple normal crossings pair induced by tropical geometry. The central player is the toric contact cycle: curves in a toric variety framed at infinity. We relate this cycle to virtual strict transforms of the double ramification cycle. En route, we outline ideas that should form the basis of a logarithmic intersection theory. We build on ideas in**this paper**with Navid.**Logarithmic Donaldson-Thomas theory (2020)****.**Davesh and I construct an enumerative geometry of ideal sheaves on a smooth threefold, with tangency conditions along a normal crossings divisor. This completes a sheaf theory parallel to logarithmic Gromov-Witten theory. The main insights in building the theory come from tropical geometry. The origins of these sheaf counting theories are**very inspiring**.**Logarithmic Gromov-Witten theory with expansions (2019).****Moduli of maps in genus one & logarithmic geometry, Volumes I & II (2017)****&****Curve counting in genus one: relative geometry & elliptic singularities (2019)****.**These papers, written with Luca, Navid, Keli, and Jonathan, investigate the relationship between tropical geometry, Gromov-Witten theory, and elliptic curve singularities. The first establishes the basic theory of radially aligned curves and connects papers of Vakil-Zinger and Smyth. The second solves the tropical inverse problem in genus one and desingularizes genus one logarithmic stable map spaces. The final paper is a calculation scheme for relative geometries.**Brill-Noether theory for curves of a fixed gonality (2017)****.**The Brill-Noether theorem is fundamental in the theory of algebraic curves. It governs the complexity of embeddings of smooth curves in projective space, when the curve is general in the moduli space of curves. Dave and I generalize this theorem by working over the Hurwitz space and give formulas for the dimensions of Brill-Noether varieties for general curves of a fixed gonality.

**My coauthors:*** Stanislav Atanasov, Luca Battistella, Dori Bejleri, Milo Brandt, Renzo Cavalieri, Alois Cerbu, Rodrigo Ferreira da Rosa, Tyler Foster, Louis Gaudet, Simon Hampe, David Jensen, Paul Johnson, Michelle Jones, Dagan Karp, Timothy Leake, Catherine Lee, Yoav Len, Steffen Marcus, Hannah Markwig, Davesh Maulik, Samouil Molcho, Navid Nabijou, Luke Peilen, Paul Riggins, Keli Santos-Parker, Andrew Salmon, Mattia Talpo, Martin Ulirsch, Jeremy Usatine, Ravi Vakil, Nick Wawrykow, Teddy Weisman, Jonathan Wise, Ursula Whitcher. *